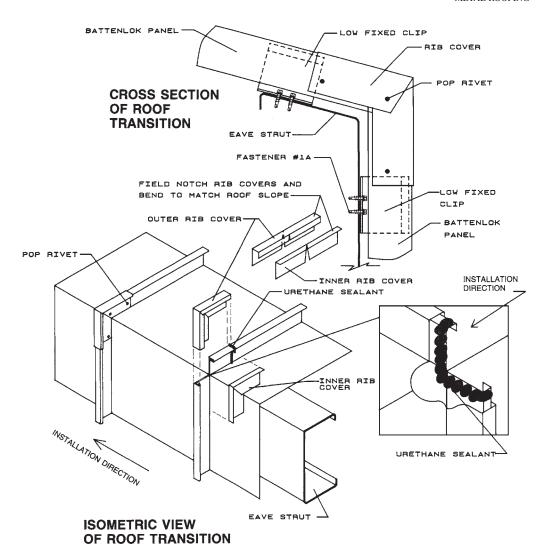

180 CHAPTER SIX

		.,		SECTION PROF	PERTIES				
	F _y (KSI)	WEIGHT (PSF)	TOP F	LAT IN COMPRI	ESSION	BOTTOM FLAT IN COMPRESSION			
PANEL GAGE			l _x (in.4/ft.)	S _x (in.³/ft.)	M _a (Kip in.)	l _x (in.4/ft.)	S _x (in.³/ft.)	M _a (Kip in.)	
24	50.0	1.29	0.1005	0.0544	1.6300	0.0557	0.0489	1.4650	
22	50.0	1.65	0.1413	0.0791	2.3700	0.0788	0.0652	1.9520	

NOTES

- All calculations for the properties of BattenLok panels are calculated in accordance with the 1986 edition of Specifications for the Design of Light Gauge Cold Formed Steel Structural Members - published by the American Iron and Steel Institute (A.I.S.I.).
- 2. Ix is for deflection determination.
- 3. \hat{S}_x is for bending.
- 4. Ma is allowable bending moment.
- 5. All values are for one foot of panel width.

ALLOWABLE UNIFORM LIVE LOADS IN POUNDS PER SQUARE FOOT


24 Gage (F _Y = 50 KSI)									
SPAN	LOAD	SPAN IN FEET							
TYPE	TYPE	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
2-SPAN	POSITIVE WIND LOAD	232	161	118	91	72	58	48	40
	LIVE LOAD/DEFLECTION	156	109	80	61	48	39	32	27
3 OR	POSITIVE WIND LOAD	290	201	148	113	89	72	60	50
MORE	LIVE LOAD/DEFLECTION	195	136	100	76	60	49	40	34

22 Gage (F _y = 50 KSI)									
SPAN	LOAD	SPAN IN FEET							
TYPE	TYPE	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
2-SPAN	POSITIVE WIND LOAD	337	234	172	132	104	84	70	59
	LIVE LOAD/DEFLECTION	208	145	106	81	64	52	43	36
3 OR	POSITIVE WIND LOAD	421	293	215	165	130	105	87	73
MORE	LIVE LOAD/DEFLECTION	260	181	133	102	80	65	54	45

NOTES

- 1. Allowable loads are based on uniform span lengths and F_{ν} of 50 KSI.
- 2. Live load is allowable live load.
- 3. Wind load is allowable wind load and has been increased by 331/3%.
- Deflection loads are limited by a maximum deflection ratio of L/240 of span or maximum bending stress from live load.
- 5. Weight of the panel has not been deducted from allowable loads.
- 6. Load table values do not include web crippling requirements.

FIGURE 6.32 Sample vertical-seam panel data (Battenlok by MBCI). (MBCI.)

NOTES

- 1. Field cut legs of panels and bend to required angle.
- Apply urethane sealant to both the roof portion and fascia portion of the male leg of the panel before the next panel is installed.
- 3. Field notch and bend inner and outer rib covers to match the roof transition.
- 4. Field apply a bead of urethane sealant over rib before installing rib covers.
- 5. Pop rivet inner and outer rib covers to rib of panel.
- 6. Using vise grip duckbills, crimp the outer rib cover to match the roof and fascia seams.

FIGURE 6.33 Roof-to-fascia transition detail with Battenlok. (MBCI.)